
Efficient Wavelet Tree Construction and
Querying for Multicore Architectures

José Fuentes, Erick Elejalde, Leo Ferres,
Diego Seco, Andrea Rodŕıguez

Universidad de Concepción, Concepción, Chile
{jfuentess,eelejalde,lferres,dseco,andrea}@udec.cl

Abstract. Wavelet trees have become very useful to handle large data
efficiently. By the same token, in the last decade, multicore architectures
have become ubiquitous, and parallelism in general has become extremely
important in order to gain performance. This paper introduces a practical
multicore algorithm for wavelet tree construction that runs in O(n) time
using lg σ processors, and a querying technique based on batch processing
that improves on simple domain-decomposition techniques.

1 Introduction and motivation

After their introduction in the mid-2000s, multicore computers –computers with
a shared main memory and more than one processing unit– have become perva-
sive. In fact, it is hard nowadays to find a single-processor desktop, let alone a
high-end server. The argument for multicore systems is simple [1, 2]: thermody-
namic and material considerations prevent chip manufacturers from increasing
clock frequencies beyond 4GHz. Since 2005, clock frequencies have stagnated at
around 3.75GHz for commodity computers, and even in 2013, 4GHz computers
are rare. For instance, the clock frequency of Intel’s newest micro-architecture,
Haswell, to be released in June 2013, ranges from 2GHz to 3.9GHz. Thus, one
possible next step in performance is to take advantage of multicore computers.
To do this, algorithms and data structures will have to be modified to make them
behave well (both asymptotically and practically) in parallel architectures.

In the past few years, much has been written about compressed data struc-
tures. One such structure that has benefited from thorough research is the
wavelet tree [3], which can be seen as a way to represent a sequence, a reordering
of elements, or a grid of points. Wavelet trees have been useful in a wide range of
problems, from representing and querying sequences and documents in informa-
tion retrieval [4, 5], determining permutations for generic numerical sequences [6],
and solving geometric problems such as visibility of points in grids [7].

Any application for a wavelet tree is an application for a parallel wavelet tree.
However, one can think of several practical applications especially suited for par-
allel wavelet trees. In particular, those that handle so-called big or massive data.
An example of such type of applications is searching gene encoding [8], where
not only the data to search in (e.g., a complete genome sequence), but also the

data to search for (e.g., the recognized genes) is large. There are 16 million genes
that are already recognized and stored in a database such as genBank1. Another
example is positional inverted indexing for document retrieval, an application of
wavelet trees to represent sequences which continuously demands indexing larger
text collections [9]. This is to name but a few applications. For a comprehensive
and up-to-date overview, see [3].

Our contributions in this paper are as follows: we first propose a linear
O(n) time parallel algorithm for wavelet tree construction using lg σ proces-
sors (Section 3.1)2 and report experiments showing the algorithm to be practi-
cal for large datasets and alphabets, achieving close to perfectly linear speedup
(Section 4.1). In order to exploit multicore architectures, we also investigated
techniques to speed up range queries and propose BQA, a hybrid domain-
decomposition/parallel batch processing technique (Section 3.2) that exploits
both multicore architectures and cache data locality effects in hierarchical mem-
ory systems. We empirically achieve almost perfect linear throughput by aug-
menting the number of cores (Section 4.2). To the best of our knowledge, this
is the first proposal of a parallel wavelet tree (in the dynamic multithreading
model, see Section 2.2).

2 Preliminaries

2.1 Wavelet trees

Since Grossi et al. introduced the wavelet tree in 2003 [10], this compact data
structure has spurred much research (see [3, 11] for comprehensive surveys). Al-
though it has been original devised as a data structure for encoding a reordering
of the elements of a sequence, it has been successfully used in many applications.
For example, they have been used to index sequences [10, 12, 13], documents [14],
grids [15] and even sets of rectangles [16], to name just a few applications.

The wavelet tree presents some nice theoretical properties. For example, it
can be stored in space bounded by different measures of the entropy of the under-
lying data, thus enabling compression. But, in addition, they are also efficiently
implementable [17] and perform well in practice. For the purpose of this paper,
let us describe the wavelet tree in a simple and general way as a data struc-
ture that maintains a sequence of n symbols S = s1, s2, . . . , sn over an alphabet
Σ = [1..σ] under the following operations: access(S, i), which returns the symbol
at position i in S; rank c(S, i), which counts the times symbol c appear up to
position i in S; and selectc(S, j), which returns the position in S of the j-th
appearance of symbol c.

The wavelet tree is a balanced binary tree. We identify the two children of a
node as left and right. Each node represents a range R ⊆ [1, σ] of the alphabet Σ,
its left child represents a subset Rl ⊂ R and the right child a subset Rr = R\Rl.
Every node virtually represents a subsequence S′ of S composed of symbols

1 http://www.ncbi.nlm.nih.gov/genbank
2 We use lg x = log2 x.

whose value lies in R. This subsequence is stored as a bitmap of length n, and,
for each position i in the bitmap, a 0 bit means that position i belongs to Rl

and a 1 bit means that it belongs to Rr.
In its simplest form, this structure requires ndlg σe+o(n lg σ) bits for the data,

plus O(σ lg n) bits to store the topology of the tree, and supports aforementioned
queries in O(lg σ) time by traversing the tree using O(1)-time rank/select opera-
tions on bitmaps (see for example [18]). Its construction takes O(n lg σ) time (we
do not consider space-efficient construction algorithms [19, 20]). As we mentioned
before, the space required by the structure can be reduced: the data can be com-
pressed and stored in space bounded by its entropy (via compressed encodings
of bitmaps and modifications on the shape of the tree), and the O(σ lgn) bits
of the topology can be removed [21], which is important for large alphabets. In
favor of clarity, we focus on the simple form, though our results can be extended
to other encodings and tree shapes.

Besides from the basic primitives described above, the wavelet tree supports
richer queries than initially imagined. For example, Mäkinen and Navarro [21]
showed its connection with a classical two-dimensional range search data struc-
ture. They showed how to solve range queries in a wavelet tree and its applica-
tions in position-restricted searching. In [22], the authors represent posting lists
in a wtree and solve ranked AND queries by synchronized solving of several range
queries. Thus, solving range queries in parallel becomes important. As we present
a parallel version of these queries, let us define them here. Given 1 ≤ i ≤ i′ ≤ n
and 1 ≤ j ≤ j′ ≤ σ, a range query rq(S, i, i′, j, j′) reports all the symbols sx
such that x ∈ [i, i′] and sx ∈ [j, j′]3. The counting version of the problem can be
defined analogously.

Some work has been done in parallelism. In [9], authors explore the use of
wavelet trees in distributed web search engines. They assume a distributed mem-
ory model and propose two partition techniques (document- and term-based) to
balance the workload of the wavelet trees. Note that our work is complementary
to theirs, as each node in their distributed system can be assumed a multicore
computer that can benefit from our algorithms. In [23], authors explore the use
of SIMD instructions to improve the performance of wavelet trees (and other
string algorithms, see, for example, [24]). This set of instructions can be con-
sidered as low-level parallelism. We can also benefit from their work as it may
improve the performance of the sequential parts of our algorithms.

2.2 Dynamic multithreading

Dynamic multithreading (henceforth, DYM) [25] is a model of parallel computa-
tion faithful to several industry standards such as Intel’s CilkPlus4 and Thread-
ing Building Blocks5, OpenMP Tasks6, and Microsoft’s Task Parallel Library7.

3 Notice that a grid is a particular case where σ = n.
4 http://cilkplus.org/
5 http://threadingbuildingblocks.org/
6 http://openmp.org/wp/
7 http://msdn.microsoft.com/en-us/library/dd460717.aspx

We will define amultithreaded computation as a directed acyclic graph (DAG)
G = (V,E), where the set of vertices V are instructions and (u, v) ∈ E are depen-
dencies between instructions; whereby in this case, u must be executed before v.8

In order to signal parallel execution, we will augment sequential pseudocode with
three keywords, spawn, sync and parfor. The spawn keyword signals that the
procedure call that it precedes may be executed in parallel with the next instruc-
tion in the instance that executes the spawn. In turn, the sync keyword signals
that all spawned procedures must finish before proceeding with the next instruc-
tion in the stream. Finally, parfor is simply “syntactic sugar” for spawn’ing
and sync’ing ranges of a loop iteration. If a stream of instructions does not
contain one of the above keywords, or a return (which implicitly sync’s) from
a procedure, we will group these instruction into a single strand. Strands are
scheduled onto processors using a work-stealing scheduler, which does the load-
balancing of the computations. Work-stealing schedulers have been proved to be
a factor of 2 away from optimal performance [26].

To measure the efficiency of our parallel wavelet tree algorithms, we will use
three metrics: the work, the span and the number of processors. In accordance to
the parallel literature, we will subscript running times by P , so Tp is the running
time of an algorithm on P processors. The work is the total running time taken
by all (unit-time) strands when executing on a single processor (i.e., T1)

9, while
the span, denoted as T∞, is the critical path (the longest path) of G. In this
paper, we are interested in speeding up wavelet tree manipulation and finding
out the upper bounds of this speedup. To measure this, we will define speedup as
T1/TP = O(P), where linear speedup T1/TP = Θ(P), is the goal. We also define
parallelism as the ratio T1/T∞, the maximum theoretical speedup that can be
achieved on any number of processors.

3 Multicore wavelet tree

3.1 Parallel construction

In favor of clarity, we focus on binary wavelet trees where the symbols of Σ are
contiguous in [1, σ]. If they are not contiguous, we can use a bitmap to remap
the sequence to a contiguous alphabet [17]. Under these restrictions, the wtree
is a balanced binary tree with dlg σe levels.

In this scenario, a simple recursive algorithm, such as the one implemented
in Libcds10, can build a wtree in T1 = O(n lg σ) time by a linear processing
of the symbols at each node. The recursive rwt algorithm works by halving
Σ recursively into binary sub-trees whose left-child are all 0s and the right all
1s, until 1s and 0s mean only one symbol in Σ. We parallelized rwt by the

8 Notice that the RAM model is a subset of the DYM model where the outdegree of
every vertex v ∈ V is ≤ 1.

9 Notice, again, that analyzing the work amounts to finding the running time of the
serial algorithm using the RAM model.

10 http://libcds.recoded.cl

Algorithm 1: Wavelet tree parallel construction (pwt)

Input : S, n, σ
Output: A wavelet tree representation WT of S

1 l← dlg σe
2 WT ← Create a new tree with l levels
3 parfor i← 0 to l − 1 do
4 m← 2i

5 WTi ← Create a new level with m nodes
6 parfor j ← 1 to m do

7 WT j
i ← Initialize a new Node

8 for v ← 1 to n do
9 u← bsv/b σ

2×m
cc

10 if u is odd then

11 bitmapSetNextBit(WT
u/2
i .bitmap, 1)

12 else

13 bitmapSetNextBit(WT
u/2
i .bitmap, 0)

14 return WT

usual technique of spawning one task for each recursive call except the last,
while doing the latter on the calling thread [27]. In our case, we spawn the left
sub-tree to continue working on the right sub-tree. As we show in Section 4, this
naive parallel version of the recursive algorithm does not behave well in practice.
Indeed, in what follows we analytically show that it does not get any parallelism
in the worst case.

The DAG of the rwt is weighted. Not all strands in this DAG are the same
weight: the frequency of symbols is not the same. All paths are the same length;
that is, O(lg σ), the critical path will be given by the weight of the heaviest path
in the DAG. In the worst case, where one branch always contains most of S,
T∞ = O(n lg σ). This is the case, for example, when Σ is ordered by frequency.
In the best case, when all symbols in Σ have exactly the same frequency, then
T∞ = O(n). Finally, the parallelism for the worst case of prwt is T1/T∞ =
O(1), which is no parallelism at all. In turn, in the best case, we have that the
parallelism is O(lg σ), which means that the algorithm scales on σ.

Instead, we propose an iterative construction algorithm that performs worse
when executed sequentially, but shows nice parallel behavior. The key idea of
the algorithm is that we can build any level of the wtree independently from
the others. Therefore, unlike the classical construction, when building a level we
cannot assume that a previous step is providing us the correct permutation of
the elements of S. Instead, we compute for each symbol of the original sequence
its node at level i. The following proposition shows how it can be computed.

Proposition 1. Given a symbol s ∈ S and a level i, 0 ≤ i < l, of a wtree with
l = dlg σe levels, we can compute the node at which s is represented at level i as
s � l − i.

In other words, if the symbols of Σ are contiguous, then the i most significant
bits of the symbol s gives us its corresponding node at level i. In the word-RAM
model with word size Ω(lg n), this computation takes O(1) time, and thus the
following corollary holds:

Corollary 1. The node at which a symbol s is represented at level i can be
computed in O(1) time.

The iterative parallel construction procedure is shown in Algorithm 1 (the
sequential version can be obtained by replacing parfor instructions with sequen-
tial for instructions). The algorithm takes as input a sequence of symbols S, the
length n of S, and the length of the alphabet, σ (see Section 2). The output is a
wtree WT , which represents the input data S. We denote the ith level of WT as
WTi, ∀i, 0 ≤ i < dlg σe and the jth node in level WTi as WT j

i , ∀j, 0 ≤ j < 2i.
The outer loop (line 3) iterates in parallel over the number of levels; i.e.,

dlg σe (line 1). Lines 4 to 13 scan each level performing the following tasks: the
first step (lines 4 to 7) calculates the maximum number of nodes for the current
level, and traverse the entire level initializing each node and its bitmap. For this
initialization we can compute the size of each node with a linear time sweep of the
elements in the node. The second step (lines 8 to 13) computes for each symbol in
S, the node that represents the alphabet range that holds it at the current level
(line 9 show an equivalent representation of the idea in Proposition 1). Then,
the algorithm computes whether the symbol belongs to the first half symbols
represented at the node (and stores a 0 bit), or to the second half (and stores a 1
bit). Notice that bitmapSetNextBit needs to keep track of the positions already
written in the bitmap and set the value of the next bit. When we reach the
last element, all the bitmaps contain the necessary information for the level.
Finally, the bitmaps in this structure need to support rank/select operations,
thus the construction algorithm must create the additional structures after the
bitmaps are completed. Notice that the parfor starting at line 6 scans the nodes
of level i initializing them. The number of nodes becomes exponentially larger
when more levels are created, until we reach σ nodes. This brings about a task
workload imbalance among the worker threads because any given task may have
exponentially more work to do. To prevent this, we also divide the first step into
strands which the work-stealing scheduler will balance (see Section 2.2).

It is easy to see that a sequential version of this algorithm takes O(n lg σ)
time, which matches the time for construction found in the bibliography for non
space-efficient construction algorithms.

If parfor implements parallelism in a “divide-and-conquer” fashion (as in our
model and implementation), then the DAG represents a binary-tree of constant-
time division of Σ until it reaches the leaves of said tree, each of which has
O(n) weight. The work of pwt is still T1 = O(n lg σ). All paths in the DAG,
however, are the same length, and the same weight: the internal nodes are all
O(1), and the leaves are all O(n). Thus, the critical path is T∞ = O(n) in all
cases, which improves on the worst case of the recursive algorithm. In the same
vein, parallelism will be T1/T∞ = O(lg σ), again for all cases. It follows that
having P = lg σ will be enough to obtain the optimal speedup.

Algorithm 2: Parallel batch querying of range report (parallelBQA)

Input : WT j
i , batch, num queries, states, results

Output: results: A collection containing the results for each query

1 lbatch← a new collection with num queries elements
2 rbatch← batch
3 local states← a new collection with num queries elements
4 for q ← 1 to num queries do
5 local statesq ← statesq
6 if local statesq = 1 then continue

7 if batchq.x
s > batchq.x

e ∨ (isLeaf(WT j
i) ∩ batchq.y range) = ∅ then

8 local statesq ← 1
9 continue

10 if isLeaf(WT j
i) then

11 resultsjq ← batchq.x
e − batchq.x

s + 1 /* j is the label */

12 continue

13 lbatchq.x
s ← rank0(WT j

i .bitmap, batchq.x
s − 1) + 1

14 lbatchq.x
e ← rank0(WT j

i .bitmap, batchq.x
e)

15 rbatchq.x
s ← rank1(WT j

i .bitmap, batchq.x
s − 1) + 1

16 rbatchq.x
e ← rank1(WT j

i .bitmap, batchq.x
e − 1)

17 lbatchq.y range← batchq.y range

18 if ∀q, local statesq = 1 then return

19 spawn parallelBQA(WT 2j
i+1, lbatch, num queries, local states, results)

20 parallelBQA(WT 2j+1
i+1 , rbatch, num queries, local states, results)

21 return /* implicit sync */

3.2 Parallel querying

We distinguish between two kinds of queries on wavelet trees: path and branch
queries. Path queries are characterized by following just a single path from the
root to a leaf and the value in level i − 1 has to be computed before the value
in level i. Examples of this type of queries are select, rank, and access. On the
other hand, branch queries may follow more than one path root-to-leaf (indeed
they may reach more than one leaf). Each path has the same characteristics as
path queries and each path is independent from others paths. Examples of this
type of queries are range count and range report [28].

In a parallel setting, a single path query cannot be parallelized because only
one level of the query can be computed at a time. The common alternative is
parallelizing several path queries using domain decomposition over queries (i.e.,
dividing queries over P). For this näıve approach, we obtained near-optimal
throughput, defined as the number of processors times sequential throughput11.

We implemented two branch-query-answering techniques: individual-query-
answering (IQA) and batch-query-answering (BQA). The IQA technique is the

11 For lack of space, we do not report this simple experiment, but it follows exactly the
same methodology reported in Section 4.2.

obvious query by query processing. The BQA technique involves grouping sets of
queries to take advantage of spatial and temporal locality in hierarchical memory
architectures. For instance, at each node in the wtree, we can evaluate all the
queries in a batch reusing the node’s bitarray, thus increasing locality.

With little effort, we can parallelize sequential IQA in a domain decompo-
sition fashion (denoted as dd-IQA), achieving near-optimal throughput (more
than nine times the throughput for P = 12 compared to the sequential IQA)11.

The parallelBQA algorithm is shown in Algorithm 2. It implements the gen-
eral BQA technique mentioned above, answering queries in a single batch. In
particular, the algorithm portrayed here parallelizes the recursive calls during
the traversal of the wtree (the spawn instruction in line 19). This is what we
call “internal” parallelization. If the spawn were to be taken out, we would be
left with a sequential batch processing algorithm. In addition, if P is sufficiently
large, we can also apply domain decomposition techniques to the list of batches,
calling parallelBQA also in parallel (denoted here as dd-parallelBQA). This
means a “double” parallelization, an internal one and an external one. Notice
that although the algorithm implements range report this technique is also ap-
plicable to range count.

4 Experimental results

All algorithms were implemented in the C programming language and compiled
using GCC 4.8 with no compiler optimizations. The experiments were carried
out on a dual-processor Intel Xeon CPU (E5645) with six cores per processor,
for a total of 12 physical cores running at 2.40GHz. Hyperthreading was dis-
abled. The computer runs Linux 3.5.0-17-generic, in 64-bit mode. This machine
has per-core L1 and L2 caches of sizes 32KB and 256KB, respectively and a
per-processor shared L3 cache of 12MB, with a 5,958MB (∼6GB) DDR RAM
memory. Algorithms were compared in terms of running times using the usual
high-resolution (nanosecond) C functions in <time.h>12

4.1 Construction experiments

We compared the implementation of our parallel wavelet tree construction al-
gorithm (henceforth pwt) against a naively parallelized version prwt of the tra-
ditional O(n lg σ) recursive algorithm rwt, the latter sequential algorithm being
our baseline for comparison. The “trials” consisted in manipulating different al-
phabet and input sizes (i.e., σ and n), and the number of processors P recruited
to work on the task. Since we are interested in big data, in order to obtain large
enough alphabets, we took the english corpus of the Pizza & Chili website13

as a sequence of words instead of the characters of the English alphabet. This
representation gave us a large initial alphabet Σ of σ=633,816 symbols, which

12 This is a reproducible-research-friendly paper, everything needed to replicate these
results is available at REDACTED FOR BLIND REVIEW

13 http://pizzachili.dcc.uchile.cl/texts/nlang/

was ordered by their frequency of occurrence in the original english text. For
experimentation, we generated two kinds of alphabets Σ′ of size 2k: the first was
constructed by taking the top 2k most frequent words in the original Σ, while
the second did away with the frequency information, and assigned each symbol
a random index using a Marsenne Twister [29] on the frequency alphabet, with
k ∈ {4, 6, 8, 10, 12, 14} in both cases. To create the input sequence S of n sym-
bols, we searched for each symbol in Σ′ in the original english text and, when
found, appended it to S until it reached the maximum possible size given σ′

(∼1.5GB, in the case of σ′ = 214), maintaining the order of the original english
text. We then either split S until we reached the target sizes, which varied from
2MB (i.e., 221 bytes), 4, 8, 16, 32, 64, 128, 256 up to 512MB (the maximum in
the english corpus), or concatenated S with initial sub-sequences of itself to
reach larger sizes up to 2GB (231 bytes)14.

We repeated each trial three times. We worked with the minimum time taken
by all three repetitions of a trial, assuming that slightly larger values for any
given trial are just “noise” from external processes such as operating system
and network tasks. We also report the speedup as defined above in Section 2.2,
sequential time divided over parallel time on P processors.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

24 26 28 210 212 214

Sp
ee

du
p

Size of alphabet

pwt
prwt

pwt_shuffled
prwt_shuffled

Fig. 1: Speedup over σ with a 2GB text.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

221 222 223 224 225 226 227 228 229 230 231

Sp
ee

du
p

Size of sequence in bytes

pwt
prwt

pwt_shuffled
prwt_shuffled

Fig. 2: Speedup over n, with σ = 214.

Figure 1 shows this speedup (P = 12) for both implemented parallel algo-
rithms: the prwt (based on the traditional recursive algorithm), and pwt, our
iterative parallel implementation. We also show the behavior of these algorithms
when the alphabet is shuffled (random) versus ordered by frequency of occur-
rence in the original text. The iterative implementation of pwt shows good paral-
lel behavior, scaling linearly over lg σ processors. The pwt algorithm has O(lg σ)
parallelism; thus, speedup does not improve beyond P > lg σ, but neither does
it get worse. Thus, although we report speedup for P = 12, the same speedup
for each σ is reached at P = lg σ. Readers may notice a drop in speedup at

14 Notice that since we worked with integers, these numbers expressed in bytes should
be divided by 4 (in our architecture) to get the number of elements n of S.

σ = 214, but this is because the hardware had 12 processors. Upon reaching this
point, the machine cannot create any more wtree levels in parallel and resorts to
scheduling the excess tasks on the available processors, slowing down the general
construction process.

A bit more surprising is that pwt also seems to scale over n (see Figure 2).
This is a nice side effect of our parallel algorithm that does not happen with
prwt. This speedup is due to the fact that we expect larger values of n and σ to
offset the time taken to create and schedule worker threads and the tasks mapped
onto those threads. In the case of prwt, the generation of a task per spawned
wtree node makes scheduling and administration costlier, affecting scalability.

4.2 Querying experiments

To generate branch queries, ranges over the text were selected with random
bounds and the size was fixed at 1%. In order to stress the querying algorithm,
we also took [1, σ] as the range of the alphabet. This ensured that the query
traversal reached the leaves of the wtree. To compare sequential IQA and par-
allel IQA, we randomly generated 10,000 range queries. To test the BQA tech-
niques we took a new set of randomly generated 10,000 queries and grouped
them into 100-query batches. As we did for construction experiments, all branch
query experiments were tested on the 2GB english text, σ′ = 214 and varying
the available processors from 1 to 12 (see Figure 3). We repeated each experi-
ment three times. We worked with the maximum throughput taken by all three
repetitions, similar to Section 4.1.

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 6 8 10 12

T
hr

ou
gh

pu
t

of processors

dd-IQA

dd-BQA

dd-ParallelBQA

Fig. 3: Throughput over P for 100
batches of 100 queries (10,000 queries).

Threads

Algorithms 1 2 4 6 8 10 12

IQA 109.2 - - - - - -

dd-IQA 113 60.6 30.3 20.5 16.7 13.4 11.5

BQA 99.2 - - - - - -

dd-BQA 99.1 48.4 24.9 17.2 13.3 11.2 9.3

parallelBQA 98.5 49.2 26 17.8 14.2 11.5 9.9

dd-parallelBQA 98.4 48 23.8 16.2 12.7 10.3 8.6

Table 1: Running times of branch queries
(in seconds × 10,000 queries).

As discussed in Section 3.2, the BQA technique implies a little more pro-
gramming effort but improves throughput over the IQA by answering 10% more
queries/second in the sequential case and over 23% more queries/second for the
domain-decomposition case (denoted here as dd-BQA). As we saw, a consequence

of the BQA is that tasks now demand enough work to offset the cost of inter-
nally parallelizing the batch answering process (see Algorithm 2). By combining
domain decomposition with internal batch parallelization, we achieve 34% more
throughput (i.e., we answer one third more queries a second) compared to the
domain-decompositioned IQA. Throughput scales well over P . To see the orders
of magnitude of the implementations’ running times, see Table 1.

5 Conclusion

Despite the vast amount of research done around wavelet trees, very little has
been done to-date to optimize these data structures and their associated oper-
ations for current multicore architectures. We have shown that it is possible to
have practical multicore implementations of wavelet tree construction by exploit-
ing information related to the levels of the wtree, and have shown a non-trivial
parallelization of querying wavelet tree data.

In this paper we focused on the most general representation of a wavelet
tree. However, some of our results may apply to other variants of wavelet trees.
In the full version of this article we shall present how to extend our results to
compressed wavelet trees (for example, Huffman shaped wtrees) and to general-
ized wavelet trees (i.e., multiary wavelet trees where the fan out of each node is
increased from 2 to O(polylog(n))). We shall explore also the extension of our
results to the Wavelet Matrix [30] (a different levelwise approach to avoid the
O(σ lgn) space overhead for the structure of the tree, which turns out to be
simpler and faster than the wavelet tree without pointers). We also plan to ex-
periment with real data from other domains such as inverted indices [22], genome
information and grids. More future work also involves dynamization, whereby
the wtree is being modified concurrently by many processes as it is queried.

After two decades, it is evident that architecture has become relevant again.
It is nowadays difficult to find single core computers. It therefore seems like a
waste of resources to stick to sequential algorithms. We believe one natural way
to improve performance of important data structures such as wavelet trees is to
squeeze every drop of parallelism of modern multicore machines, as we did here.

References

1. Otellini, P.: Keynote Speech at Intel Developer Forum. Internet (September 2003)
2. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s Journal 30(3) (March 2005)
3. Navarro, G.: Wavelet trees for all. In: CPM. Volume 7354 of LNCS. (2012) 2–26
4. Barbay, J., Gagie, T., Navarro, G., Nekrich, Y.: Alphabet partitioning for com-

pressed rank/select and applications. In: ISAAC. Volume 6507 of LNCS. (2010)
315–326

5. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
In: ESA. Volume 6942 of LNCS. (2011) 748–759

6. Barbay, J., Navarro, G.: Compressed representations of permutations, and appli-
cations. In: STACS. Volume 3 of LIPIcs. (2009) 111–122

7. Navarro, G., Russo, L.M.S.: Space-efficient data-analysis queries on grids. In:
ISAAC. Volume 7074 of LNCS. (2011) 323–332

8. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Inf. Comput. 213 (2012) 13–22

9. Arroyuelo, D., Costa, V.G., González, S., Maŕın, M., Oyarzún, M.: Distributed
search based on self-indexed compressed text. Inf. Process. Manage. 48(5) (2012)
819–827

10. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
SODA. (2003) 841–850

11. Makris, C.: Wavelet trees: A survey. Comput. Sci. Inf. Syst. 9(2) (2012) 585–625
12. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations

of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)
article 20

13. Chien, Y.F., Hon, W.K., Shah, R., Vitter, J.S.: Geometric Burrows-Wheeler trans-
form: Linking range searching and text indexing. In: DCC. (2008) 252–261

14. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:
CPM. Volume 4580 of LNCS. (2007) 205–215

15. Navarro, G., Nekrich, Y., Russo, L.: Space-efficient data-analysis queries on grids.
Theoretical Computer Science 482 (2013) 60–72

16. Brisaboa, N., Luaces, M., Navarro, G., Seco, D.: Space-efficient representations
of rectangle datasets supporting orthogonal range querying. Information Systems
35(5) (2013) 635–655

17. Claude, F., Navarro, G.: Practical Rank/Select Queries over Arbitrary Sequences.
In: SPIRE. (2008) 176–187

18. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In: SODA. (2002) 233–242

19. Claude, F., Nicholson, P.K., Seco, D.: Space efficient wavelet tree construction. In:
SPIRE. (2011) 185–196

20. Tischler, G.: On wavelet tree construction. In: CPM. (2011) 208–218
21. Mäkinen, V., Navarro, G.: Rank and select revisited and extended. Theoretical

Computer Science 387(3) (2007) 332–347
22. Konow, R., Navarro, G.: Dual-sorted inverted lists in practice. In: SPIRE. LNCS

7608 (2012) 295–306
23. Ladra, S., Pedreira, O., Duato, J., Brisaboa, N.R.: Exploiting SIMD instructions

in current processors to improve classical string algorithms. In: ADBIS. (2012)
254–267

24. Faro, S., Külekci, M.O.: Fast multiple string matching using streaming simd ex-
tensions technology. In: SPIRE. Volume 7608 of LNCS. (2012) 217–228

25. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Multithreaded Algorithms.
In: Introduction to Algorithms. Third edn. The MIT Press (2009) 772–812

26. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded computations by work
stealing. J. ACM 46(5) (September 1999) 720–748

27. Leiserson, C.E.: The cilk++ concurrency platform. In: DAC, ACM (2009) 522–527
28. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-

cations to information retrieval. Theor. Comput. Sci. 426-427 (2012) 25–41
29. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidis-

tributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul. 8(1) (1998) 3–30

30. Claude, F., Navarro, G.: The wavelet matrix. In: SPIRE. Volume 7608 of LNCS.
(2012) 167–179

