
Improving Accessibility to Mathematical Formulas: The Wikipedia Math Accessor

José Fuentes Sepúlveda
Department of Computer Science

University of Concepción
Concepción, Chile

Email: jfuentess@udec.cl

Abstract—Mathematics accessibility is an important topic for in-
clusive education. In this work, we make Wikipedia’s repository of
mathematical formulas accessible by providing a natural language
description of its more than 420,000 formulas using a well-researched
sub-language. We also contribute by targeting Spanish speakers, for
whom assistive technologies, particularly domain-specific technologies
like the one described here, are scarce. Our focus on the semantics
of formulas (rather than their visual appearance) allowed us to
generate verbalizations with a precision of approximately 80% of
understandable descriptions, as shown in an evaluation with sighted
users.

Keywords-Accessibility (Blind and Visually Impaired); Natural lan-
guage Interaction; Mathematical formulas

I. INTRODUCTION

Wikipedia is the largest free encyclopedia, featuring over 18
million articles altogether, 3.7 million in English and over 830,000
articles in Spanish. Wikipedia is mostly text-based, and accessing
its textual information through screen-readers is, relatively speaking
(relative to PDFs, for instance), quite straightforward. However,
Wikipedia also features images, sound and other multimedia con-
tent, that are, perhaps not surprisingly, much less accessible to
certain populations such as blind and visually-impaired or deaf
people.

One problematic content type, particularly for the blind com-
munity, is that of mathematical formulas. In Wikipedia, there are
(in November of 2011) a total of 426,431 mathematical formulas
spread over 29,374 Wikipedia articles. Unfortunately, mathematical
formulas in Wikipedia are inaccessible, in part because they are
displayed using rasterized images (png files) of LATEX expressions
embedded in the <alt> attribute of an HTML tag, where
for, for example,

E = mc2 (1)

<img class="tex"
alt="E = mcˆ2"
src="name.png" />

This paper introduces to MATHACC, an Assistive Technology
(AT) designed to help visually impaired people gain access to
graphical representation of mathematical formulas published in
Wikipedia, using their own screen-readers. Our contribution is
threefold: 1) a study to identify templates for verbalization, based
on the semantics of mathematical formulas; 2) the implementation
of a prototype system and 3) a preliminary evaluation of this system
and the generated descriptions with “blind-folded” sighted users.

II. RELATED WORK

Recently, researchers have become very interested in the problem
of accessibility to mathematical formulas by the blind community,

and excellent quality research has been produced [1], [2]. Among
them there is the LAMBDA project [3], funded by the European
Union in the Information Society Technologies. The system con-
sists of a markup language to represent mathematical expressions,
not unlike, for instance, MathML. This is an excellent choice for
certain contexts, but today’s enormous availability of and reliance
on digital information makes the use of Braille an expensive and/or
slow technology.

AsTeR, in turn, is a system that helps produce renderized audio
of electronic documents [4]. This system takes a LATEX document as
input and parses it, generating a tree structure representation, map-
ing the tree’s nodes onto the audible portion of the node contents
that allow the sound presentation of mathematical formulas. AsTeR
also allows navigation of the formulas, exploring the expression as
a tree-based structure. There is no knowledge, however, about how
this system performs on a massive dataset of formulas.

Stanley and Karshmer introduce MathGenie [5], a system that
reads out mathematical formulas, together with their Nemeth code
[6]. MathGenie was specially designed for students in the sciences
who had some visual impairment. The shortcoming with this
system lies in that it receives presentation MathML as input,
focusing mostly on how formulas are presented, rather than what
their semantics is.

MathPlayer is a plug-in for Microsoft Internet Explorer [7],
[8] that was designed, primarily, for rendering a visualization
of MathML. It now allows users to interact with mathematical
expressions through two navigational modes: one based on text
and another based on a tree representation of the formula. Unfor-
tunately, its use is restricted only to platforms that support Internet
Explorer.

In [9], Reddy and Gupta proposed a different approach: they
report on a method for translating MathML into voiceXML1. In this
way, a voiceXML interpreter will render the documents generating
audio. Nevertheless, pure use of presentation MathML in translation
is less reliable than the use of content MathML to exploit the
semantics of the formulas.

Finally, Pontelli and Abu Doush [10] propose a framework
that allows navigation of mathematical expressions using two
modalities: one based on linear access, and the other based on
hierarchical access, using a tree as the underlying data structure.
In their system, the implementation is a plug-in for the FireFox web
browser, on top of FireVox2, a FireFox screen-reader system. This
system also takes presentation MathML as input. Besides, FireVox
ceased to be updated in 2008.

1http://www.voicexml.org/
2http://www.firevox.clcworld.net/

None of these papers, however, have attempted to, given some
semantics (as encoded in content MathML), provide linguistic
descriptions to a massive repository of formulas such as the ones
in Wikipedia; nor have they done a thorough investigation on the
language used to talk about formulas. Notice as well, that none
of these systems actually work with the Spanish language natively.
These are our contributions.

III. SYSTEM DESCRIPTION

A. MATHACC architecture

The system consists of three sub-systems: one devoted to the
detection of mathematical formulas in Wikipedia pages, together
with a process that translates from LATEX to a more structured, less
ambiguous representation written in MathML (specifically content
MathML), a template-based natural language generation system like
the one in [11], and finally a module that restructures the Wikipedia
page to incorporate the linguistic description of the formula. In
what follows, we detail the workings of these different modules.

1) Detecting and cleaning mathematical expressions: This first
module of the system is in charge of capturing, parsing and
cleaning the HTML code to retrieve all mathematical expres-
sions in it. In Wikipedia articles, mathematical expressions are
shown as raster images, using the tag, with the attribute
<class="tex">, while the attribute <alt> contains the LATEX
definition, as shown in the introduction (see Equation 1). Note that
MATHACC does not do image processing itself, but rather works
with the semantically undetermined LATEX string that Wikipedia
exposes in the source HTML.

Once the LATEX formulas were curated, the next step was to
generate a more structured, less ambiguous representation. LATEX is
semantically ambiguous, in the sense that not all information about
a formula is explicit in its representation. To clean the semantics of
the formulas, we chose to translate them into the content markup
of MathML, see Figure 1 for an example. Mathematical Markup
Language (MathML) is an application of XML for describing
mathematical notations and capturing both its structure and content.
To do this, we used SnuggleTex, a Java library that does part of
the translation between LATEX and MathML automatically3.

<math> <math>
<apply> <apply>
<inverse/> <power/>
<ci> f </ci> <ci> f </ci>

</apply> <cn> -1 </cn>
</math> </apply>

</math>

Figure 1. Example of content MathML. The left XML snippet belongs to
the inverse function, while the one on the right corresponds to the “variable
f” to the power of -1.

2) The Sub-Language of the Generation Module: Perhaps the
largest contribution of this paper is the design of the language
to be used with each MathML operator. We present a template-
based natural language generation (NLG) system [12], [13], [14],
[15], and thus each MathML operator will be associated with a
template. To find out what the best template was for each operator,

3http://www2.ph.ed.ac.uk/snuggletex

we carried out a simple experiment that consisted in having
participants look at a formula, and provide the best natural language
description they could think of. In the experiment, we showed
formulas formed by 21 operators, that correspond to the most
used operators in Wikipedia. For example, the template obtained of

the formula
x+ 1

x− 1
was ‘‘$OP1$ dividido por $OP2$’’

and the template obtained of n
√
a was ‘‘raı́z $GRADO$ de

OP’’ (for more detail see [16]).
3) The Language Generation Module: The backbone of the

NLG system used in MATHACC has been successfully used in
other applications, most notably in IGRAPH-LITE [17], [11], [18].
The version we are working on here, however, has a new engine
that allows for stack-based generation that is vital given the nesting-
based nature of mathematical expressions. In what follows, we give
a detailed run of the system to explain its workings. To do this, we
use, allegedly, one of the most beautiful (and universal) equations
of all time: E = mc2.

The whole stack trace of the generation system is shown in
Figure 2. Once the curated MathML expression is input into the
generation module, the XML snippet is parsed and the tree data
structure we obtain is then traversed in depth-first manner, adding
MathML elements to a stack. Every time the apply node is found
in the tree, an apply node is added to the stack, signaling the
start of a new operator. Likewise, when a ci or cn node is found
on the tree, only their children are added to the stack (see m on
line 10 in Figure 2). In all other situations, the node is added to
the stack without any modifications.

Figure 2. Stacktrace of the NLG system for E = mc2.

Every time the XML apply sub-tree is completely traversed
(which means all the operands are now known, together with the
operand itself), we start “popping” the stack until the first apply
node to be found. The popped nodes of the stack are “pushed” into
another temporary stack to be input into the subsystem that applies
the templates. Once the temporary stack has been built, the tem-
plates are applied by “popping” the top of the temporary stack, and
searching a template dictionary for the appropriate one to use. For
instance, if the temporary stack is [’2’, ’c’, ’power’], the
dictionary search yields the binary operator template for power:
“VAR elevado a VAR”, where each of 2 and c are assigned,
in “first out” order, to each “VAR”. The system finally adds a

(pausa) string at the extremes of the verbalization. Pauses are
added as markers to separate semantically self-contained units in
the verbalization to help text-to-speech grouping (see [4]). The
process is repeated for each apply until the stack is empty.

Although it is not a part of the generator itself, the next step
is to modify the Wikipedia page adding the verb attribute with
the verbalization within the tag that contains the processed
LATEX snippet.

B. User’s view

Although the MATHACC system has been designed, primarily,
with the blind computer user in mind, the interaction with the
system may be analyzed from two different points of view: the
publisher of mathematical content, and the consumer of that
content. In the case of the content producer, it is only necessary
to add the LATEX codification of a certain mathematical expression
to the alt attribute to the tag. As we will see, the system
will be in charge of generating a natural language description of
it.

In the case of the content seeker, and screen-reader user, the
only requirement is to make the interface read the supplied verb
attribute of math formulas in Wikipedia LATEX.

IV. EVALUATION

A. Study 1: Coverage of MATHACC

Before the usability studies can be carried out, there was the
need to know how comprehensive the generation stage was. In
other words, it was important to see whether too few formulas from
Wikipedia were generated, or whether the generation was wrong.
To get a feeling of just how MATHACC was performing, we tested
the generation engine on a subset of 100, 500, and 1000 random
formulas from Wikipedia.

On a first pass, we counted the number of times the generator
could not assign a description to a formula. For the sets of 100,
500 and 1000 test formulas, the generator provided a linguistic
description, for 66%, 65.5% and 66.1%, respectively. This is
without any fine tuning, just taking the LATEX formula, translating it
into MathML and finally going through the generator. The reasons
for the failure to generate were varied but they all had to do with
how SnuggleTex would convert from LATEX to MathML.

On a second pass, for the 66 formulas that were given a
description in the 100 random formula file, we counted the number
of times the description provided was wrong. Since the percentages
were so close, we hypothesize that the other test cases (500 and
1000 formula files) will be similar. Of the 66 formulas that were
given a description, 6 (˜10%) were wrong, reaching 60% of correct
verbalizations . This is not a bad result considering that there
has been no optimization done to the translation between LATEX
to MathML.

B. Study 2: Verbalization understandability

To test if the generation engine worked correctly, 20 engineers
and engineering students, between 20 and 30 years of age, par-
ticipated in the study. We created two web pages, each with
fifteen formulas extracted from Wikipedia. Each formula was coded
directly in content MathML to eliminate the constraints inherent in
the translation between LATEX and MathML. The formulas were
built using the 21 most used operators of Wikipedia, and three

others were added: factorial (!), tangent (tan) and subset (⊂),
to allow for more diversity. The formulas that made up the first
web page were used to evaluate prosodic indicators (only pauses).
On the other hand, the second web page was used to evaluate
lexical indicators. For more information about prosodic and lexical
indicators see [1].

Formulas were hidden from participants using Cascading Style
Sheets (or CSS), to recreate the lack of sight as factor, which
might influence the results. Each web page was verbalized with
MATHACC and then read to the participants through WebAnywhere
[19]. Participants had to listen to the verbalization of the formulas
and write on paper the expressions that they believed they had
heard, in mathematical notation. They could hear and navigate the
expressions as many times as was necessary. Below, the responses
of the participants are contrasted against the stimuli expressions
present in the web page. Only matches were counted as correct
answers.

The results show 76% of effectiveness to prosodic indicators
and 79.3% of effectiveness to lexical indicators. The participants
also had the opportunity to comment at the end of the evaluation,
which highlighted two issues: (1) verbalized expressions using
prosodic indicators were easier to transcribe correctly, because the
verbalization was more similar to how people read expressions.
However, participants made more mistakes, caused mainly by the
difficulty of capturing the nesting property of some expressions
and (2) verbalization with lexical indicators led to an increased
cognitive load. However, it gave participants more confidence in
their answer.

V. GENERAL DISCUSSION, CONCLUSIONS AND
FUTURE WORK

We have demonstrated that it is possible to provide rich lin-
guistic verbalizations to sui generis mathematical formulas in
Wikipedia, in the Spanish language, and using content MathML
as the input to the generator (previous curation of the Wikipedia
LATEX conventions). Using the semantics of mathematical formulas,
through content MathML, results in less ambiguous verbalizations,
compared with verbalizations based on the syntax of mathematical
formulas. Furthermore, appropriate use of the indicators, whether
prosodic, lexical or extralinguistic, together with verbalizations
based on semantics of mathematical formulas, helps to generate
unambiguous descriptions.

A few things can be improved: there is obviously the need
for a better LATEX→content MathML translator, considering the
excellent contributions by [20] or taking advantage of the context of
Wikipedia’s pages to disambiguate some mathematical formulas. In
order to avoid the translation being a source of mistakes, it would
be necessary for mathematical formulas of Wikipedia to be encoded
in content MathML.

It would also be of interest to go deeper into the semantics of
formulas, and provide a context for variables: thus, if the expression
is F = mg, to preprocess the formula, taking into account the
context it appears in, to contain the fact that m denotes mass and
g denotes gravity, while F is force.

The use of indicators is still naive, making some verbalizations
ambiguous. For this reason, a more rigorous study about the state
of the art in the use prosodic, lexical and extralinguistic indicators,
and the combination of them, should be done.

REFERENCES

[1] A. Karshmer, G. Gupta, and E. Pontelli, “Mathe-
matics and accessibility: A survey,” University of
Texas at Dallas., Tech. Rep., 2007, available from:
http://www.utdallas.edu/˜gupta/mathaccsurvey.pdf.

[2] C. Jayant, “A survey of math accessibility for blind persons
and an investigation on text/math separation,” 2006, available
from: http://www.cs.washington.edu/homes/cjayant/papers /Math-
AccessFinal.pdf.

[3] W. Schweikhardt, C. Bernareggi, N. Jessel, B. Encelle, and
M. Gut, “Lambda: A european system to access mathematics
with braille and audio synthesis,” in Computers Helping People
with Special Needs, ser. Lecture Notes in Computer Science,
K. Miesenberger, J. Klaus, W. Zagler, and A. Karshmer,
Eds. Springer Berlin / Heidelberg, 2006, vol. 4061, pp.
1223–1230, 10.1007/11788713 176. [Online]. Available: http:
//dx.doi.org/10.1007/11788713 176

[4] T. V. Raman, “Audio system for technical readings,”
Ithaca, NY, USA., Tech. Rep., 1994, available from:
http://www.cs.cornell.edu/home/raman/aster/aster-thesis.ps.

[5] P. Stanley and A. Karshmer, “Translating mathml into
nemeth braille code,” in Computers Helping People with
Special Needs, ser. Lecture Notes in Computer Science,
K. Miesenberger, J. Klaus, W. Zagler, and A. Karshmer,
Eds., vol. 4061. Springer Berlin / Heidelberg, 2006,
pp. 1175–1182, 10.1007/11788713 170. [Online]. Available:
http://dx.doi.org/10.1007/11788713 170

[6] A. Nemeth, The Nemeth Braille code for mathematics and science
notation: 1972 revision. Produced in braille for the Library of
Congress, National Library Service for the Blind and Physically
Handicapped by the American Printing House for the Blind.,
1972.

[7] N. Soiffer, “Mathplayer: web-based math accessibility,” in In As-
sets ’05: Proceedings of the 7th international ACM SIGACCESS
conference on Computers and accessibility. ACM Press, 2005,
pp. 204–205.

[8] ——, “Mathplayer v2.1: web-based math accessibility,” in
Proceedings of the 9th international ACM SIGACCESS
conference on Computers and accessibility, ser. Assets ’07.
New York, NY, USA: ACM, 2007, pp. 257–258. [Online].
Available: http://doi.acm.org/10.1145/1296843.1296900

[9] H. Reddy and G. Gupta, “Dynamic aural browsing of mathml
documents with voicexml,” in Human-computer interaction.
Lawrence Erlbaum and Associates, 2005.

[10] I. Abu Doush and E. Pontelli, “Building a programmable ar-
chitecture for non-visual navigation of mathematics: Using rules
for guiding presentation and switching between modalities,” in
UAHCI ’09: Proceedings of the 5th International Conference
on Universal Access in Human-Computer Interaction. Part III.
Berlin, Heidelberg: Springer-Verlag, 2009, pp. 3–13.

[11] L. Ferres, P. Verkhogliad, G. Lindgaard, L. Boucher, A. Chretien,
and M. Lachance, “Improving accessibility to statistical graphs:
the igraph-lite system,” in Proceedings of the 9th international
ACM SIGACCESS conference on Computers and accessibility,
ser. Assets ’07. New York, NY, USA: ACM, 2007, pp. 67–74.
[Online]. Available: http://doi.acm.org/10.1145/1296843.1296857

[12] E. Reiter, “Nlg vs. templates,” in In Proceedings of the Fifth
European Workshop on Natural Language Generation, May 1995,
pp. 95–106.

[13] G. Wilcock, “Pipelines, templates and transformations: Xml for
natural language generation,” in Proceedings of the 1st NLP and
XML Workshop, 2001, pp. 1–8.

[14] K. Van Deemter, E. Krahmer, and M. Theune, “Real versus
template-based natural language generation: A false opposition?”
Comput. Linguist., vol. 31, pp. 15–24, March 2005. [Online].
Available: http://dx.doi.org/10.1162/0891201053630291

[15] S. Siprada and F. Gao, “Summarizing dive computer data: A case
study in integrating textual and graphical presentations of numer-
ical data,” in Proceedings of Workshop on Multimodal Output
Generation, vol. volume CTIT Proceedings of the Workshop on
Multimodal Output Generation, 2007, pp. 149–157.

[16] L. Ferres and J. Fuentes Sepúlveda, “Improving accessibility
to mathematical formulas: the wikipedia math accessor,” in
Proceedings of the International Cross-Disciplinary Conference
on Web Accessibility, ser. W4A ’11. New York, NY,
USA: ACM, 2011, pp. 25:1–25:9. [Online]. Available: http:
//doi.acm.org/10.1145/1969289.1969322

[17] L. Ferres, A. Parush, S. Roberts, and G. Lindgaard, “Helping
people with visual impairments gain access to graphical
information through natural language: The igraph system,” in
Computers Helping People with Special Needs, ser. Lecture Notes
in Computer Science, K. Miesenberger, J. Klaus, W. Zagler,
and A. Karshmer, Eds. Springer Berlin / Heidelberg, 2006,
vol. 4061, pp. 1122–1130, 10.1007/11788713 163. [Online].
Available: http://dx.doi.org/10.1007/11788713 163

[18] L. Ferres, G. Lindgaard, and L. Sumegi, “Evaluating a tool for
improving accessibility to charts and graphs,” in Proceedings
of the 12th international ACM SIGACCESS conference on
Computers and accessibility, ser. ASSETS ’10. New York,
NY, USA: ACM, 2010, pp. 83–90. [Online]. Available:
http://doi.acm.org/10.1145/1878803.1878820

[19] J. P. Bigham, C. M. Prince, and R. E. Ladner, “Webanywhere: a
screen reader on-the-go,” in Proceedings of the 2008 international
cross-disciplinary conference on Web accessibility (W4A), ser.
W4A ’08. New York, NY, USA: ACM, 2008, pp. 73–82.
[Online]. Available: http://doi.acm.org/10.1145/1368044.1368060

[20] E. Pontelli and B. Palmer, “Translating between formats
for mathematics: Current approach and an agenda for future
developments,” in Computers Helping People with Special Needs,
ser. Lecture Notes in Computer Science, K. Miesenberger,
J. Klaus, W. Zagler, and D. Burger, Eds. Springer Berlin
/ Heidelberg, 2004, vol. 3118, pp. 627–627, 10.1007/978-3-
540-27817-7 92. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-27817-7 92

